Transformer#
salt.models.transformer_v2.Attention
#
Bases: torch.nn.Module
Multihead attention module.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embed_dim |
int
|
Dimension of the input. |
required |
num_heads |
int
|
Number of attention heads. |
1
|
attn_type |
str
|
Name of backend kernel to use. |
'torch-meff'
|
dropout |
float
|
Dropout rate. |
0.0
|
bias |
bool
|
Whether to include bias terms. |
True
|
diff_attention |
bool
|
Use differential attention or not |
False
|
depth |
int
|
Number of current attention layer |
1
|
do_qk_norm |
bool
|
Whether to apply norm to q and k |
False
|
do_v_norm |
bool
|
Whether to apply norm to v |
False
|
Source code in salt/models/transformer_v2.py
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
|
forward
#
Attention forward pass, dispatches to the appropriate backend.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
torch.Tensor
|
The pointcloud of shape (batch, x_len, dim). |
required |
kv |
torch.Tensor
|
Optional second pointcloud for cross-attn with shape (batch, kv_len, dim). |
None
|
mask |
torch.BoolTensor
|
Mask for the pointcloud x, by default None. |
None
|
kv_mask |
torch.BoolTensor
|
Mask the kv pointcloud, by default None. |
None
|
attn_mask |
torch.BoolTensor
|
Full attention mask, by default None. |
None
|
culens |
torch.Tensor
|
Cumulative lengths of the sequences in x, by default None. Only used for the flash-varlen backend. |
None
|
maxlen |
int
|
Maximum length of a sequence in the x, by default None. Only used for the flash-varlen backend. |
None
|
Returns:
Type | Description |
---|---|
torch.Tensor
|
Output of shape (batch, x_len, dim). |
Source code in salt/models/transformer_v2.py
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
|
salt.models.transformer_v2.GLU
#
Bases: torch.nn.Module
Dense update with gated linear unit.
See 2002.05202.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embed_dim |
int
|
Dimension of the input and output. |
required |
hidden_dim |
int | None
|
Dimension of the hidden layer. If None, defaults to embed_dim * 2. |
None
|
activation |
str
|
Activation function. |
'SiLU'
|
dropout |
float
|
Dropout rate. |
0.0
|
bias |
bool
|
Whether to include bias in the linear layers. |
True
|
gated |
bool
|
Whether to gate the output of the hidden layer. |
False
|
Source code in salt/models/transformer_v2.py
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
|
salt.models.transformer_v2.EncoderLayer
#
Bases: torch.nn.Module
Encoder layer consisting of a self-attention and a feed-forward layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
embed_dim |
int
|
Dimension of the embeddings at each layer. |
required |
norm |
str
|
Normalization style, by default "LayerNorm". |
'LayerNorm'
|
drop_path |
float
|
Drop path rate, by default 0.0. |
0.0
|
ls_init |
float | None
|
Initial value for the layerscale, by default 1e-3. |
None
|
depth |
int
|
The depth of the layer, by default 1. |
1
|
dense_kwargs |
dict | None
|
Keyword arguments for salt.models.transformer_v2.GLU. |
None
|
attn_kwargs |
dict | None
|
Keyword arguments for salt.models.transformer_v2.Attention. |
None
|
norm_type |
str
|
Normalization type, can be ['pre', 'post', 'hybrid'], by default 'pre'. |
'pre'
|
Source code in salt/models/transformer_v2.py
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
|
salt.models.transformer_v2.TransformerV2
#
Bases: torch.nn.Module
Transformer model consisting of a stack of Transformer encoder layers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_layers |
int
|
Number of layers. |
required |
embed_dim |
int
|
Dimension of the embeddings at each layer. |
required |
out_dim |
int | None
|
Optionally project the output to a different dimension. |
None
|
norm |
str
|
Normalization style, by default "LayerNorm". |
'LayerNorm'
|
attn_type |
str
|
The backend for the attention mechanism, by default "torch-flash". Provided here because the varlen backend requires pre/post processing. |
'torch-math'
|
do_final_norm |
bool
|
Whether to apply a final normalization layer, by default True. |
True
|
num_registers |
int
|
The number of registers to add to the END of the input sequence. Registers are randomly initialised tokens of the same dimension as any other inputs after initialiser networks. See 2309.16588. |
1
|
drop_registers |
bool
|
If to drop the registers from the outputs |
False
|
kwargs |
dict
|
Keyword arguments for [salt.models.transformer_v2.EncoderLayer]. |
{}
|
Source code in salt/models/transformer_v2.py
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
|
Created: January 25, 2024